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A new t r a n s p o r t  p h e n o m e n o n  is deduced  by a rgumen t s  based on the exis- 

tence of  n o n e q u i l i b r i u m  long- range  pai r  cor re la t ions  which pers is t  even in  a 

d i lu te  gas. 
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The long-range pair correlations of the preceding note (1~ (equations from this 
note will be prefaced by a Roman numeral II) can be measured in principle 
by means of the random scattering of light (Rayleigh scattering) from a non- 
equilibrium gas. The effect is new and is in principle unobtainable from the 
Boltzmann equation. It is not a density correction, i.e., it persists even in the 
limit of extreme dilution, N/V---~ O. Unfortunately, it is numerically very 
small and may be impossible to measure for that reason. 

Let the electric vector of the incident light wave be given by 

Eino(r, t) = Re[E0 exp(ik0.r - ioJt)] (1) 

where Eo is a constant vector with complex components. A typical atom, 
number j, at position rj produces a scattered wave of amplitude proportional 
to the atomic polarizability ~z, and (in the wave zone) inversely proportional 
to the distance R from the effective volume to the point of observation. The 
effective volume is defined by the collimation of the incident light beam and 
by the slits of the detector of the scattered light. 
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The standard theory is given by Born. (2~ One must separate the total 
field E produced by all atoms j within the effective volume into two parts: 
(a) an ensemble average over the statistical ensemble describing the positions 
of the gas particles U; and (b) the fluctuations about this ensemble average. 

Contribution (a) leads to the complex index of refraction of the gas, 
while contribution (b) leads to Rayleigh scattering. This latter contribution 
is the only one of interest to us here. It is given by 

Eb = R e ( a k • 1 7 6 2 1 5  
(47r)1/2 R ~. {exp[i(k0 - k) .u]  

- <exp[i(ko - k).rj])~v} exp(-  icot)) (2) 

where Eo, ko, and co are as in (1), and k is the wave vector of the scattered 
wave, i.e., Ikl = tkol and the direction o f k  is from the effective volume tO the 
entry slit of the detector of scattered light. The sum over j extends over all 
atoms within the effective volume, and the "average"  is an ensemble average 
over the (nonequi!ibrium) ensemble describing the gas. 

By definition, the ensemble average of Eb vanishes. But the average of 
]Ebl 2 is nonzero, and turns out to be given in terms of  the one-particle dis- 
tribution function f l  and the pair correlation a(1, 2) [see Eq. (II.4)], by 

a21k • (Eo • k)l 2 f (  
<[Ed2>~v 4~.R 2 fl(1) dr~ 

\ 

2,co   o- k, r 4 

where dr = dSr dap and the r-integrations extend over the "effective volume" 
defined earlier. 

The single integral is just N~, the total number of scattering centers 
within the effective volume. This is the main term. 

The standard result is obtained from (3) by assuming that the gas is in 
equilibrium. This means 

c,(1, 2) = %q(l, 2) 

= const x exp[-(/3/2rn)(pl 2 + p22)]{exp[-~V(r12)] - 1} (4) 

This vanishes whenever r12 > ro, the range of the interaction. As a result, 
the double integral in (3) is of higher order in the number density N/V than 
the single integral, and can therefore be ignored for a very dilute gas. The 
conventional formula for Rayleigh scattering then follows. 

I f  one assumes that c~(1, 2) is confined to the region r12 < ro even away 
from equilibrium, then one obtains conventional Rayleigh scattering from a 
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dilute gas also for nonequilibrium states. The number of atoms in the effective 
volume, 

N~ = ) f(1) d~-i (5) 

may then be time dependent, but that is all. 
However, the assumption regarding e(1, 2) is incorrect, as pointed out 

in the preceding note. (1) Since e(1, 2) appears explicitly in (3), and extends 
over distances comparable to a mean free path in nonequilibrium states, one 
can expect a nonzero effect even in a dilute gas. 

The new effect depends upon the gas being in a nonequilibrium state. 
We shall illustrate it by taking the gas to be in a steady state with viscous drag. 
Let the gas be contained in an infinite slab between two parallel walls. Wall 1 
is in the x-y  plane (z = 0) and is at rest. Wall 2 is in the plane z --- a, and this 
wall moves at constant speed u in the positive x direction. We assume that 
gas particles adhere to a wall before reemission into the gas. There is therefore 
a steady velocity gradient u/a maintained in the gas, the mean gas velocity 
being in the x direction with a value depending on z: 

<v)~,, = (uz/a, 0, 0) (6) 

Notice that the x, y, and z directions have been defined by this description. 
This will be used later. 

Although the linearized Boltzmann equation is easily solved for this 
system, the more general equations of the preceding note (1) present rather 
more difficulty even for such a simple geometry. However, in the breakup of 
~(1, 2) given by (II.5) and (II.7), the "pr imary"  pair correlation %(1, 2) can 
be obtained explicitly to a good approximation. We substitute this for e(1, 2) 
in Eq. (3), i.e., we neglect the Rayleigh scattering produced by %(1, 2). This 
should give a lower bound for the true Rayleigh scattering, since ~m(1, 2) is 
"driven by"  ~p(1, 2) in the equations, and is a correlation in the same general 
direction, only less pronounced. 

The resulting calculation is rather lengthy, with very awkward integrals. 
The final result is best stated in terms of the ratio 

intensity of scattered light from nonequilibrium state 
R = intensity of scattered light from gas in equilibrium (7) 

We define 
x = ko - k (8) 

and we let K be the magnitude of this vector, and 0~ and 5~ be its polar angles 
with respect to the x, y, z directions defined earlier. We then get the result 
(for a hard-sphere gas) 

15 [ ~rm '~ ~'~ u (cos 0~ sin O~ cos r (9) 
R = 1 - -~ \ k B r l  K---a 
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where m is the atomic mass, kB the Boltzmann constant, T the temperature, 
and A the mean free path. The function G is complicated but has the property 

G(KA) = 1 for KA >> 1 (10) 

G(•A) = const x (KA) 3 for KA << 1 (11) 

The "cons tan t"  is the numerical value of a complicated integral, of  order 
unity. The condition KA >> 1 means that the mean free path A is much bigger 
than the wavelength of the light. 

The angular dependence in (9) is on the angles 0~, ~ of  the vector (8), 
and is therefore very characteristic for this phenomenon. The effect is 
proportional to the velocity gradient u/a and goes to zero in equilibrium. The 
expression (9) is independent of the density N/V,  i.e., the effect is not a density 
correction. In the limit KA >> 1 it does not even depend on the value of the 
mean free path A. The effect occurs in the extreme dilute gas regime but 
cannot be deduced from the Boltzmann equation: That equation does not 
contain ~(1, 2), which is the essential quantity for the new effect. One can use 
the conventional derivation of the Boltzmann equation to obtain information 
about the pair correlation immediately following a binary collision, i.e., about 
our cr~(1, 2) at r12 = r0 (r0 is the range of the interaction). However, one needs 
to know the decay law for the correlation as a function of r12 to obtain the 
result (11); and, in principle, one also requires the nonsingular contribution 
~m(1, 2) for a complete calculation. Since neither of  these can be obtained from 
the standard arguments about the Boltzmann equation, we conclude that the 
new effect is beyond the reach of that theory. We note in particular that the 
theory of Ref. 4 does not give our results; rather, it would lead to Eq. (10) 
for all values of the mean free path and of the wavelength of light. 

Unfortunately, the magnitude of the new effect appears to be extremely 
small for experimental detection. Hence this effect may be more a matter of 
principle for theorists than a prediction of a feasible experimental measure- 
ment. The theoretical point, however, seems to have some significance. 
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